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Recently, we have benchmarked and tuned the MILC code on a number of architectures including Intel Itanium
and Pentium IV (PIV), dual-CPU Athlon, and the latest Compaq Alpha nodes. Results will be presented for
many of these, and we shall discuss some simple code changes that can result in a very dramatic speedup of the
KS conjugate gradient on processors with more advanced memory systems such as PIV, IBM SP and Alpha.

1. INTRODUCTION

This contribution is a condensation of a 16 page
poster with 17 tables of benchmarks. The poster
is available on the web [1].
Benchmarks presented here are for the Con-

jugate Gradient algorithm with Kogut-Susskind
quarks, not just for D=. They are done within the
context of a complete application for creation of
gauge �elds using the R-algorithm [2]. The ap-
plication uses even-odd checkerboarding, which
reduces possible reuse of data in cache. Even
the single CPU benchmarks are done with a fully
parallel application that splits the computation
within D= into two stages to accommodate the
need to wait for boundary values that would come
from another node in a multiCPU run. This also
reduces potential cache reusage. On some of the
architectures, we make use of assembly code for
basic SU(3) arithmetic routines or for prefetching
data to cache. We use Kogut-Susskind quarks for
benchmarking because they are used in our dy-
namical quark calculations. KS quarks are more
demanding than Wilson quarks in terms of mem-
ory bandwidth. In single precision, the former
require 1.45 bytes/op of input data and produce
0.36 byte/op of output. For Wilson quarks only
0.91 bytes/op of input is required and output is
unchanged. Thus, it should not be surprising to
�nd that a Wilson quark code can achieve higher
speed than reported here [3].
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2. ARCHITECTURES

Since August 2000, MILC has been working
with Intel and NCSA under a non-disclosure
agreement to tune our code for the Itanium pro-
cessor. In December 2000, we were allowed to re-
port �rst results without assembly code[4]. Some
limited results with assembly code were reported
at Linux World last January. We may now talk
more freely about results on Itanium.
MILC has had several months of production

running on the initial Terascale Computer System
at the Pittsburgh Supercomputer Center. It is
based on Compaq ES40 nodes that contain 667
MHz EV67 Alpha chips. The full 6 TF computer
will be based on 1000 MHz EV68 chips. At the
end of March, we were given access to the �rst
ES45 node at PSC that contains that chip.
IBM SP tests have been run on either the In-

diana University SP or Blue Horizon at SDSC.
They have 375 MHz Power 3 chips deployed on
4-way and 8-way SMP nodes, respectively.
During the Spring, we had access to a 1.5 GHz

Pentium IV system and a dual 1.2 GHz Athlon
system, thanks to NCSA and Penguin Comput-
ing, respectively.

3. CODE CHANGES

The work on the Itanium processor was carried
out in conjunction with two Intel engineers, Gau-
tham Doshi and Brian Nickerson. Doshi worked
on in-lining and optimizing compiler ags for the
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C code. Nickerson wrote assembly code that in-
cludes prefetching and looping over sites. The
changes described next have not yet been tried
on Itanium.
The MILC code data structure is \site major,"

i.e., there is a structure for each site that contains
all the physical variables for that site. The lattice
is an array of site structures. Adding variables to
the application is quite easy: One only needs to
modify the site structure, and when the lattice is
allocated, the new variables will be globally ac-
cessible. This Spring, we tested performance en-
hancements from temporary allocations of \�eld
major" variables for the conjugate gradient rou-
tine. On chips with wider cache lines, this results
in substantial speedups. The gauge �elds and
necessary vectors are copied to temporary vari-
ables that are much better localized in memory.
If a cache line contains data not needed for the
current site, it is most likely the data required
for the next site to be computed, rather than a
di�erent physical variable, as would be found in
the next bytes of the site structure. I suggested
these changes to Dick Foster, of Compaq, who
implemented them and improved prefetching.

4. SINGLE NODE RESULTS

The benchmarks presented here were run on
lattices of size L4. They are all for single precision
gauge links and vectors, with dot products accu-
mulated in double precision. The fermion matrix
is either for the Kogut-Susskind (KS) or fat-link
plus Naik (fat-Naik) action [5]. For production
runs, we are using the \Asqtad" action [6]. (The
performance of the inverter is independent of the
details of the fattening).

4.1. Itanium

Results on Itanium without assembly code were
presented at CCP2000 [4], and are available on
the web. With an 800 MHz processor, perfor-
mance was 916, 867 and 732 MF for L = 4, 6 and
8, respectively. Because of memory access issues,
performance drops to 326 MF for L = 14. With
Nickerson's assembly code, the numbers are quite
impressive. We have 1223, 1139 and 938 MF for
L = 4, 6 and 8, respectively, and even for L = 14,

we achieve 464 MF. The �eld major code has not
yet been tried on Itanium.

4.2. Alpha

In Table 1, we compare the performance of
the old site major code with the new �eld ma-
jor code. We present results for both the 667
MHz EV67 chips in the ES40 and the 1000 MHz
EV68 chips in the ES45. We can see substantial
speedups both from the newer processor and the
code improvement. Currently, Itanium is the per-
formance leader for smaller L, while Alpha leads
for large L. Of course, the codes are di�erent and
considerable work would be required to combine
both the bene�ts of assembly code (with loop con-
trol) and �eld major organization on each chip.

4.3. Power 3

The IBM SP really bene�ts from the new �eld
major code. Table 2 shows the performance and
speedup for various L. The substantial fallo�
with increasing L has been greatly ameliorated,
and the overall performance level has increased
substantially even for small L. These results
and the corresponding multinode results were ob-
tained on the Indiana University SP. Now let's
turn to the commodity processors.

Table 1
Megaop rate on Alpha Processors

L ES40 ES45 ES45
site major site major �eld major

6 517 731 977
8 495 701 843
10 395 548 934
12 249 395 778
14 253 347 609

Table 2
Megaop rate and speedup on IBM SP

L site major �eld major speedup
4 512 663 1.29
6 458 705 1.54
8 391 682 1.74
10 215 557 2.58
12 158 528 3.35
14 135 449 3.32
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Table 3
Megaop rate and speedup on 1.5 GHz PIV

L site major �eld major speedup
4 591 577 0.98
6 240 503 2.10
8 220 481 2.19
10 208 491 2.36
12 205 480 2.34
14 202 469 2.33

Table 4
Megaop rate per CPU on dual 1.2 GHz Athlon
MP system

L site m. site m. �eld m. �eld m.
single dual single dual

4 590 464 654 457
6 203 167 336 251
8 176 142 298 232
10 170 134 289 228
12 165 132 287 239
14 166 133 281 218

4.4. Intel IA32 and AMD

Both Pentium IV and AMD Athlon MP pro-
cessors show excellent speedup on the new �eld
major code. Details appear in Tables 3 and 4.
For the Athlon we had a dual CPU system and
show results for both one and two processors. The
Pentium IV is performing at almost 500 MF even
for L = 8 and greater. It is not as fast as the
previous chips discussed, but it is certainly very
cost e�ective. The Athlon system has DDR mem-
ory rather than Rambus (RDRAM). One can see
that for L = 4 for which the problem �ts in cache,
the Athlon, despite its slower clock speed out
performs the Penium IV. However, for larger L,
access to memory becomes crucial and the Pen-
tium IV excels. It would be interesting to try a
Pentium IV motherboard that uses DDR mem-
ory. On the dual Athlon system the Fat-Naik
inverter was benchmarked and found to be 10{20
MF faster than KS [1].

5. MULTINODE RESULTS

The program Netpipe has been used to com-
pare message passing speeds of Fast Ethernet,

Table 5
Megaop rate for 84 sites per CPU

1 4 128 256
ES45 (�eld) 839 621
ES40 (site) 495 425 302 262
SP (site) 375 340 204 181
SP (�eld) 624 529 176 140
Itanium (site) 503 304
Platinum (site) 139 94 75
Platinum (�eld) 159 107 71
Scali (�eld) 72 63

Myrinet, Scali, Quadrics and the IBM SP net-
work. Fast Ethernet only achieves 20{60 Mbit/s
for messages of the size needed during the con-
jugate gradient (800{30K bytes). The other net-
works, except for Quadrics are about a factor of
10 faster. Quadrics is about an additional factor
of two faster.
Tables of results are available [1] for ES45 with

up to four CPUs, the ES40 with up to 256 CPUs,
the IBM SP with up to 256 CPUs, the prototype
Itanium cluster with up to 16 CPUs, the Plat-
inum (Pentium III) cluster with up to 128 CPUs
and a Pentium II cluster with Scali interconnect.
Here we just display results for L = 8. The table
indicates whether the code was site major or �eld
major. Scali is limited by the power of the CPU.
Results on larger numbers of ES45 and Itanium
nodes should be available in late October.
Thanks to Compaq, Intel, NCSA, Penguin

Computing, PSC, SDSC, UITS and the MILC
Collaboration.

REFERENCES

1. S. Gottlieb, http://physics.indiana.edu/~sg/
lattice01/.

2. S. Gottlieb et al., Phys. Rev. D 35 (1987)
2531.

3. M. L�uscher, these proceedings, hep-
lat/0110007.

4. S. Gottlieb, http://physics.indiana.edu/~sg/
ccp2000/, Comp. Phys. Comm., to appear,
hep-lat/0112026.

5. S. Naik, Nucl. Phys. B316 (1989) 238.
6. K. Orginos, D. Toussaint and R.L. Sugar,



4

Phys. Rev. D 60 (1999) 054503, hep-
lat/9903032; G.P. Lepage, ibid, 59 (1999)
074502, hep-lat/9809157.


